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Abstract 

It is known that if R and S are coequality relations on set X with apartness, then 
their filed products need not to be coequality relations. Moreover, for two products 

SR ∗  and RS ∗  need not to be .RSSR ∗=∗  After some preparations, we give 
some necessary and sufficient conditions in order that two coequality relations R 
and S on the same set be commuting with respect to filed product in the sense that 

.RSSR ∗=∗  
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1. Introduction 

Issues of commuting relations on sets draw attention more years. 
Many authors are investigated commuting equivalences, orders, and 
quasi-orders ([4]-[6], [8], [15]-[17]). 

Setting of this article is the constructive mathematics, mathematics 
based on the intuitionistic logic, in the sense of books [1]-[3] and [7]. 
Some of important relations here are apartness, quasi-antiorder, anti-
order, and coequality relations. A relation ’‘ ≠  is called an apartness on a 
set ( )=,X  if it is consistent, symmetric, and cotransitive, i.e., if the 

following 

( ) ,,, zyyxzxxyyxxx ≠≠⇒≠≠⇒≠≠¬   

hold for any .,, Xzyx ∈  For relation R in set ( )≠=,,X  with apartness, 

we say that it is a quasi-antiorder relation on X, if satisfies the following 
conditions: 

⊆≠R  (consistency) and RRR ∗⊆  (cotransitivity), 

where the operation ”,“∗  the filled operation between relations R and S 

on set X, is defined by 

( ) ( ) ( ) ( )( ){ }.,,:, SytRtxXtXXyxRS ∈∈∈∀×∈=∗   

If a quasi-antiorder R satisfies the following condition ,1−⊆≠ RR ∪  it is 

called anti-order relation on X. Finally, if a relation R is consistent, 
symmetric, and cotransitive, it is called coequality relation on set X. 
Characteristics of these relations are investigated by this author in his 
several papers, for example, in [9]-[11]. 

In this article, as a continuation of our forthcoming paper [14], we 
investigate one of commuting problems of these relations. If R and S are 
coequalities, then their filed products not need to be coequality relations 
again, in general case. After some preparations, we give some sufficient 
conditions in order that the filed products of two coequality relations on 
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the same set are coequality relations again, and moreover, that they 
commute with respect to the filed product in the sense that ∗=∗ SSR  

.R  In this research, we grounded on the intuitionistic logic. Moreover, 
since the notion of coequality relation and the filed product of relations 
are important in the constructive mathematics, we analyze filed products 
of coequality relations on same set with apartness. So, we study side 
effects induced by existence of apartness and coequality relations in set. 

2. A Few Basic Facts on Relations 

As usual, a subset R of a product set XX ×  is called a relation on X. 
In particular, the relation ( ){ }yxXXyx ≠×∈=∇ :,  is the diversity 
relation on X. If R is a relation on X, and moreover ,Xx ∈  then the sets 

( ){ }RyxXyxR ∈∈= ,:  and ( ){ }RxzXzRx ∈∈= ,:  are called left 

and right classes of R generated by the element x. The relation {( ) ∈xy,  

( ) }RyxXX ∈× ,:  is the inverse of R and denoted by .1−R  Moreover, if 
R and S are relations on X, then the filed product of S and R are defined 
by the usual way as above. 

It is easy to see that a relation R on X is: 

(1) consistent if ,∇⊆R  

(2) cotransitive if ,RRR ∗⊆  and 

(3) linear if .1−⊆∇ RR ∪  

It is not so hard to see that a relation R on X is a coequality relation 
on X, if and only if holds ( ) .∇∗= ∩RRR  Besides, if R is a coequality 

relation on X, then holds .RRR ∗=  

In the first assertion, we prove that the filed product of relations are 
associative. 

Lemma 2.1. Let R, S, and T be relations on a set X. Then: 

(1) If ,TS ⊆  then RTRS ∗⊆∗  and ;TRSR ∗⊆∗  

(2) ( ) ( ) .RSTRST ∗∗=∗∗  
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Proof. (1) Let ( )wu,  be an arbitrary element of .RS ∗  This means, 
( ) (( ) ( ) ).,, SwvRvuXv ∈∈∈∀   According to hypothesis ,TS ⊆  we 
have that ( ) (( ) ( ) )TwvRvuXv ∈∈∈∀ ,,   is true. Hence, we have 
( ) ., RTwu ∗∈  Therefore, we proved that .RTRS ∗⊆∗  

The implication ,TRSRTS ∗⊆∗⇒⊆  we prove analogously to 
previous. 

(2) If uzyx ,,,  are arbitrary elements of X, we have: 

( ) ( ) ( ) ( ) TuzRSzxRSTux ∈∗∈⇔∗∗∈ ,,,   

(( ) ( ) ) ( ) TuzSzyRyx ∈∈∈⇔ ,,,   

( ) ( ) ( )( ))TuzSzyRyx ∈∈∈⇔ ,,,   

( ) ( ) ., RSTux ∗∗∈⇔   

Since the filed product is associative, in particular, for all natural 

number ,2≥n  we put ( ) ( ) RRRRR nnn ∗=∗= −− 11  and RR =1  and 

.0 ∇=R  For any relation R on X, we define ( ) { { }}.0N: ∪∩ ∈= nRRc n  It 

is known (see, for example, [11] or [13]) that the relation ( )Rc  is the 
biggest quasi-antiorder relation on X contained in R. Let us note that the 
operation c is monotone in sense if ,SR ⊆  then ( ) ( ).ScRc ⊆  Moreover, 

if R is a quasi-antiorder relation on X, then holds ( ) .RRc =  

For a coequality relation R on a set X, we take the family ( ) =RA  
{ } XxRx ∈  of classes of the relation R generated by elements of X. It is 

clear that RxxR =  because the relation R is symmetric. Since R is 
consistent relation, we have .Rxx   Besides, since R is a cotransitive 

relation any Rx  is a strongly extensional subset of X. Indeed, for any 
elements Xzyx ∈,,  such that ( ) ,, Ryx ∈  holds ( ) ( ) .,, RyzRzx ∈∈   
Thus, by consistency of ., xyRxzR ≠∈   So, the family { } XxRx ∈  is a 

subfamily of strongly extensional subsets of X. Suppose that for two classes 
xR  and yR  is true .yRxR ≠  It means ( )( ¬∈∈∃ xRuXu ( ))yRu∈  or 
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( )( ( ) ).yRvxRvXv ∈∈¬∈∃   From ( ) ,, Rux ∈  follows ( ) ( ) .,, RuyRyx ∈∈   
Hence, we have XyRxR =∪  because the second case is impossible. 
From ( ) ,, Ryv ∈  we analogously again got .XyRxR =∪  Therefore, for 
the family { } XxRx ∈  is true: 

(i) ;xRx   (ii) ;RxxR =  and (iii) .XyRxRyRxR =⇒≠ ∪  

Now, suppose that a family { } XttA ∈  of strongly extensional subsets of X 

satisfies the following conditions: 

(a) For any ,Xt ∈  there exists a strongly extensional subset tA  such 

that ;tAt  

(b) XAAAA stst =⇒≠ ∪  for any ., Xst ∈  

Let us define a relation R on X by 

( ) ,, Ryx ∈  if and only if ( ) ( ).uu AyAxXu ∈∈∃  

It is clear that relation R is consistent. Besides, for elements ,, yx  there 

exist subsets xA  and yA  such that xAx   and .yAy  So, since uAx ∈  

,xAx   we have .XAA xu =∪  Hence, .xAy ∈  Thus, we have 

.yAx ∈  Finally, we have .xxyy AyAxAyAx ∈∈    So, the 

relation R is symmetric. 

Assume ( ) Rzx ∈,  and .Xy ∈  Then, there exist subsets xA  and zA  

such that ,,, zzx AxAzAx ∈  and .xAz ∈  By (iii), we have 

zx AA ∪  X=  and xAy ∈  or .zAy ∈  Therefore, we have 

xx AyAx ∈  or .zz AzAy ∈  We conclude that ( ) ., Ryx ∈  or 

( ) Ryz ∈,  So, the relation R is a cotransitive relation on X. Finally, we 

have that the relation R is a coequality relation on X. 

In the following assertion, we describe the connection between a 
coequality relation R and the corresponding family { } .XttA ∈  
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Lemma 2.2. For a coequality relation R on a set X, there exists the 
unique family { } XttA ∈  of strongly extensional subsets of X, which satisfies 

the condition (a) and (b). 

Example 1. For set { }4,3,2,1=X  and coequality relation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ },2,4,1,4,2,3,1,3,4,2,3,2,1,2,4,1,3,1,2,1=R  

the corresponding family of strongly extensional subsets contains the 
following subsets: { } { } { },2,13,4,3,12,4,3,21 === RRR  and =R4  
{ }.2,1   ◊ 

For undefined notions and notations, we refereed on articles [11]-[13]. 

3. The Main Result 

Our analyze, we start with symmetric relations: 

Lemma 3.1. If R and S are symmetric relation on X, then the 
following assertions are equivalent: 

(1) ;SRRS ∗⊆∗  

(2) SR ∗  is symmetric relation on X; and 

(3) .RSSR ∗=∗  

Proof. If (1) holds, then it is clear that 

( ) .111 SRRSRSSR ∗⊆∗=∗=∗ −−−  

In fact, if ( )xy,  is an arbitrary element of ,XX ×  we have 

( ) ( ) ( ) SRyxSRxy ∗∈⇔∗∈ − ,, 1  

( ) (( ) ( ) )RytStxXt ∈∈∈∀⇔ ,,   

( ) (( ) ( ) )11 ,, −− ∈∈∈∀⇔ RtySxtXt   

( ) 11, −− ∗∈⇔ RSxy  

( ) RSxy ∗∈⇔ ,  (because R and S are symmetric). 
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Therefore, (2) also holds. 

Further on, suppose that (2) holds. Then, it is clear that 

( ) .111 RSRSSRSR ∗=∗=∗=∗ −−−  

Therefore, assertion (3) also holds. 

The implication (3) ⇒  (1) is clear. � 

Concerning cotransitive relations, we can prove: 

Lemma 3.2 ([14], Theorem 3.2). If R and S are cotransitive relations 
on X such that ,SRRS ∗⊆∗  then SR ∗  is also a cotransitive relation 

on X. 

Proof. By Lemma 2.1, we evidently have 

( ) ( ) ( ) ( ) SRSRSSRRSSRRSR ∗∗∗⊆∗∗∗=∗∗∗⊆∗  

( ) ( ).SRSR ∗∗∗=  

So, the relation SR ∗  is a cotransitive relation on X.   

The following example shows that an analogue of Lamma 3.1 for 
cotransitive relations need not be true. 

Example 2. If { },3,2,1=X  and moreover, 

 ( ) ( ) ( ) ( ) ( ) ( ){ },3,3,2,3,1,3,2,2,1,2,1,1=R  and 

( ) ( ) ( ) ( ) ( ) ( ){ },3,3,1,3,3,2,2,2,1,2,1,1=S  

then it can be easily seen that R and S are cotransitive relations on X. 
We have that 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ },3,3,2,3,1,3,3,2,1,2,3,1,1,1=∗ RS  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }.2,3,1,3,3,2,2,2,1,2,2,1,1,1=∗ SR  

It is not so hard to see that RS ∗  and SR ∗  are also cotransitive 
relations on X, but ( )SRRS ∗⊆∗¬  and ( ).RSSR ∗⊆∗¬  ◊ 
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Despite example above, we can still prove: 

Lemma 3.3 ([14], Theorem 4.1). If R and S are quasi-antiorders on X, 
then the following assertions are equivalent: 

(1) ;SRRS ∗⊆∗  

(2) SR ∗  is a quasi-antiorder; 

(3) ( ).SRcSR ∩=∗  

Proof. Since ,∇=∇∗∇⊆∗ SR  by Lemma 3.2, it is clear that the 
implication (1) ⇒  (2) is true. 

Moreover, by the corresponding properties of the operation c, (see, for 
example, [13]) it is clear that ( ) ( ) RRcSRc =⊆∩  and ( ) cSRc ⊆∩  
( ) ,SS =  and hence ( ) ( ) ( ) .SRSRcSRcSRc ∗⊆∗= ∩∩∩  

On the other hand, by the consistency of the relations R and S, it is 
clear that SSSR =∗∇⊆∗  and ,RRSR =∇∗⊆∗  and thus ⊆∗ SR  

.SR ∩  Since ( )SRc ∩  is the biggest quasi-antiorder relation under 
,SR ∩  we have to ( ).SRcSR ∩⊆∗  Therefore, the implication (2) ⇒  

(3) is also true. 

Finally, from the inclusion ( ) SRSRc ∗⊆∩  established above, it is 
clear that ( ) ( ) .SRSRcRScRS ∗⊆==∗ ∩∩  Therefore, the implication 
(3) ⇒  (1) is also true.   

The following example shows that the equality cannot be stated in 
above lemma: 

Example 3. If { },3,2,1=X  and moreover, 

( ) ( ) ( ) ( ) ( ){ },2,3,1,3,3,2,1,2,3,1=R  and 

 ( ) ( ) ( ) ( ) ( ){ },2,3,3,2,1,2,3,1,2,1=S  

then it can be easily seen that R and S are quasi-antiorders on X such 
that ( ) ( ) ( ) ( ){ }2,3,3,2,1,2,3,1=∗ RS  is a quasi-antiorder on X and 

( ) ( ) ( ){ }3,2,1,2,3,1=∗ SR  is not a quasi-antiorder X, but the inclusion 
RSSR ∗⊂∗  holds.  ◊ 
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Finally, by using Lemmas 3.1 and 3.3, we can prove the following 
theorem: 

Theorem 3.1. If R and S are coequality relations on set X, then the 
following assertions are equivalent: 

(1) ;RSSR ∗=∗  

(2) ;SRRS ∗⊆∗  

(3) ( );SRcSR ∩=∗  

(4) SR ∗  is a quasi-antiorder; 

(5) SR ∗  is consistent and symmetric relation on X; and 

(6) SR ∗  is a coequality relation. 

Proof. The first, note that SR ∩  is this case is a symmetric relation 

again. The second, the implications (1) ⇔  (2), (6) ⇒  (4), (3) ⇒  (4),       
(2) ⇔  (3), (6) ⇔  (1), (5) ⇒  (1), and (6) ⇒  (5) are obvious. 

(4) ⇒  (6) Suppose that (4) holds. Then, by Lemma 3.3, follows RS ∗  
.SR ∗⊆  Besides that, since SR ∗  is a symmetric relation (by Lemma 

3.1), thus follows .RSSR ∗=∗  So, the assertion (6) is true.   

Now, we give two examples in connection with the above theorem: 

Example 4. (1) Assume set { }4,3,2,1=X  and relations 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ },2,4,1,4,2,3,1,3,4,2,3,2,1,2,4,1,3,1,2,1=R  

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }.3,4,2,4,1,4,4,3,2,3,1,3,4,2,3,2,4,1,3,1=S  

It is not so hard to check that R and S are coequality relations on X and 
that is, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } .2,4,1,4,2,3,1,3,4,2,3,2,4,1,3,1 SRRS ∗==∗  

(2) If we choose the following coequality relations 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ },3,4,2,4,4,3,1,3,4,2,1,2,3,1,2,1=R  and 



D. A. ROMANO and M. VINČIĆ 10

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ },2,4,1,4,2,3,1,3,4,2,3,2,4,1,3,1=S  

we have 0/=∗ RS  although is ( ) ( ) ( ) ( ){ } .02,4,1,3,4,2,3,1 /≠=SR ∩  

◊ 

Finishing this article, we give the following theorem: 

Theorem 3.2. If R is a consistent and symmetric relation and S is a 
cotransitive relation on set X such that ,RS ⊆  then for any ,, Xyx ∈  the 

following assertions are equivalent: 

(1) ;xSy ∈  

(2) ( );RSxy ∗∈  

(3) ;SyxRX ∪=  and 

(4) .XyRxS =∪  

Proof. (1) ⇔  (4) Suppose that (1) holds. Then, it means ( ) ,, Syx ∈  

and by cotransitivity of S from this follows ( )(( )txXt ,∈∀  ( ) )., SytS ∈∈   

So, we have .SyxSX ∪=  Since we have yRRySy =⊆  by symmetry of 

R, we conclude that .yRxSX ∪=  Therefore, the condition (4) is true. 

Opposite, if (4) is valid, then from yRy  because R is a consistent 

relation on X and Xy ∈  follows .xSy ∈  

(1) ⇔  (2) According to RS ⊆  and properties of relations R and S, 

we have .SSRSSSS =∇∗⊆∗⊆∗⊆  Therefore, we have .RSS ∗=  

Thus, assertions (1) and (2) are equivalent. 

(2) ⇒  (3) If (2) holds, i.e., if ( ),RSxy ∗∈  it means ( ) ., RSyx ∗∈  

Thus, we have .SyxRX ∪=  So, the assertion (3) is true. 

(3) ⇒  (1) Let (3) is valid. Since R is a consistent relation, we have 
.xRx   So, we have to have ,Syx ∈  and thus .xSy ∈  Therefore, the 

assertion (1) is true.   
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Finally, let R and S be coequality relations such that RS ∗  exists. As 
corollary of Theorem 3.1, we can give a description of ( )-RS ∗ classes: 

Corollary 3.1. Let R and S be two coequality relations on set X such 
that RS ∗  is a coequality relation also. Then, 

( ) ( ){ }.: StxRXSRxtRSx ∪∩ =∈=∗  

Example 5. Let set X and relations R and S be as in the Example 
4(1). Subsets ( ) { } ( ) { } ( ) { },2,13,4,32,4,31 =∗=∗=∗ RSRSRS  and 

( ) { }2,14 =∗ RS  are classes of filed product ( ).RS ∗  For example, for 

subsets { } { } { } { },3,2,14,4,2,13,4,32,4,3,21 ==== SSSR  we have 

XSR =31 ∪  and .41 XSR =∪  ◊ 
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